SECTION A: Multiple Choice.

1. If a car accelerates at $26.5 \mathrm{~km} / \mathrm{h} / \mathrm{s}$, then find the acceleration in $\mathrm{m} / \mathrm{s}^{2}$.
A) $\quad 1.59 \mathrm{~m} / \mathrm{s}^{2}$
B) $\quad 7.36 \mathrm{~m} / \mathrm{s}^{2}$
C) $\quad 26.5 \mathrm{~m} / \mathrm{s}^{2}$
D) $\quad 95.4 \mathrm{~m} / \mathrm{s}^{2}$
E) $\quad 442 \mathrm{~m} / \mathrm{s}^{2}$
2. A bicycle can accelerate from rest to $30 \mathrm{~km} / \mathrm{h}$ in 5.0 s . What is the acceleration of the bicycle?
A) $0.6 \mathrm{~m} / \mathrm{s}^{2}$
B) $\quad 1.7 \mathrm{~m} / \mathrm{s}^{2}$
C) $\quad 22 \mathrm{~m} / \mathrm{s}^{2}$
D) $\quad 42 \mathrm{~m} / \mathrm{s}^{2}$
E) $\quad 600 \mathrm{~m} / \mathrm{s}^{2}$
3. What is the average force exerted on the 65 kg bicycle and rider in question \#2?
A) $\quad 39 \mathrm{~N}$
B) $\quad 110 \mathrm{~N}$
C) $\quad 375 \mathrm{~N}$
D) $\quad 640 \mathrm{~N}$
E) $\quad 1400 \mathrm{~N}$
4. During my bicycle ride, I travel at $25.0 \mathrm{~km} / \mathrm{h}$ for 15 minutes, then at $20.0 \mathrm{~km} / \mathrm{h}$ for 10 minutes. What is my average speed?
A) $19 \mathrm{~km} / \mathrm{h}$
B) $20 \mathrm{~km} / \mathrm{h}$
C) $22.5 \mathrm{~km} / \mathrm{h}$
D) $23 \mathrm{~km} / \mathrm{h}$
E) $25 \mathrm{~km} / \mathrm{h}$
5. How far does the bicycle travel during this time?
A) $\quad 9.6 \mathrm{~km}$
B) $\quad 9.4 \mathrm{~km}$
C) 5.8 km
D) 54 km
E) 0
6. A stone is dropped from a window and hits the ground 1.8 s later. How far above the ground is the window?
A) 8.8 m
B) 16 m
C) 18 m
D) 32 m
E) $\quad 320 \mathrm{~m}$
7. What is the speed of the stone as it just hits the ground?
A) 0
B) $13 \mathrm{~m} / \mathrm{s}$
C) $18 \mathrm{~m} / \mathrm{s}$
D) $19 \mathrm{~m} / \mathrm{s}$
E) $\quad 310 \mathrm{~m} / \mathrm{s}$
8. If the stone is thrown horizontally at a speed of $1.0 \mathrm{~m} / \mathrm{s}$ instead of dropped, then how much faster will hit the ground?
A) 0 (same time)
B) $\quad 0.1 \mathrm{~s}$
C) $\quad 0.7 \mathrm{~s}$
D) $\quad 1.7 \mathrm{~s}$
E) $\quad 1.9 \mathrm{~s}$
F) None of the above (It will take longer)
9. If the stone is thrown upwards, then the speed (compared to \#7) of the stone as it hits the
ground is:
A) zero.
B) less than before.
C) greater than before.
D) the same as before
E) None of the above - there is not enough information.
10. A jet airplane's engines push hot gases out the rear of the engine. The reaction to this force is exerted:
A) by the air on the hot gas.
B) by the hot gas on the air.
C) by the hot gas on the engine.
D) by the wings on the air.
E) by the air on the wings.
11. When a parachutist is falling towards the earth at a slow constant speed. The total upward force exerted on her (and her parachute) by the air is:
A) zero.
B) much smaller than the force of gravity.
C) slightly smaller than the force of gravity.
D) equal to the force of gravity.
E) slightly greater than the force of gravity.
12. What is the force of gravity on the space shuttle $\left(\mathrm{m}=4.4 \times 10^{5} \mathrm{~kg}\right)$ with an orbital radius of $\left(7.1 \times 10^{6} \mathrm{~m}\right)$ by the earth $\left(\mathrm{M}=5.98 \times 10^{24} \mathrm{~kg}\right)$ is:
A) $\quad 3.5 \times 10^{6} \mathrm{~N}$
B) $\quad 4.3 \times 10^{6} \mathrm{~N}$
C) $\quad 1.2 \times 10^{13} \mathrm{~N}$
D) $\quad 2.5 \times 10^{13} \mathrm{~N}$
E) $\quad 5.2 \times 10^{16} \mathrm{~N}$
13. A boat travels at $15 \mathrm{~m} / \mathrm{s}$ on still water. On a river, the boat travels upstream against the current of $5.0 \mathrm{~m} / \mathrm{s}$. What is the velocity of the boat in relation to the shore?
A) $\quad 5.0 \mathrm{~m} / \mathrm{s}$
B) $\quad 10 . \mathrm{m} / \mathrm{s}$
C) $\quad 15 \mathrm{~m} / \mathrm{s}$
D) $\quad 20 . \mathrm{m} / \mathrm{s}$
E) $\quad 22 . \mathrm{m} / \mathrm{s}$
14. The boat in \#14 is moving perpendicular to the river. In what direction does the boat move in relation to the shore?
A) 90° from the shore.
B) 72° from the shore.
C) 71° from the shore.
D) 19° from the shore.
E) $\quad 18^{\circ}$ from the shore.
15. In what direction must the boat in \#14 travel in order to reach its destination directly across the river?
A) 90° from the shore.
B) 72° from the shore upstream.
C) 71° from the shore downstream.
D) 19° from the shore upstream.
E) 18° from the shore upstream.

Using the following velocity-time graph, answer the following questions:
16. What is the displacement during the segment CD?
A) 4 m
B) 5 m
C) 6 m
D) 13 m
E) $\quad 48 \mathrm{~m}$

17. What is the corresponding displacement-time graph for the interval BD?
A)
B)
C)
D)
E)
(Pictures disappeared - draw it!)
18. What is the corresponding acceleration-time graph for the interval EF?
A)
B)
C)
D)
E)
(Pictures disappeared - draw it!)
19. At what time is the object at its maximum displacement
A) 3 s
B) 5 s
C) 6 s
D) 8 s
E) 9 s
20. You walk 5 km east then 4 km north. What is the magnitude of your displacement?
A) 0
B) $\quad 1.0 \mathrm{~m}$
C) $\quad 6.4 \mathrm{~m}$
D) $\quad 9.0 \mathrm{~m}$
E) 41 m
21. When a ball bounces, it hits the ground at $2.5 \mathrm{~m} / \mathrm{s}$ and rebounds at $1.9 \mathrm{~m} / \mathrm{s}$ in 0.10 s . What is the acceleration of the ball?
A) 0
B) $\quad 4.4 \mathrm{~m} / \mathrm{s}^{2}[$ down $]$
C) $\quad 6 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{up}]$
D) $\quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$ [down]
E) $\quad 44 \mathrm{~m} / \mathrm{s}^{2}$ [up]

Use the following vectors to answer the following questions:

22. Given the vectors \vec{v}_{1} and \vec{v}_{2}, which vector best represents $\vec{v}_{1}+\vec{v}_{2}$?
A)
λ
B)
C)
D)
E)
23. Given the same vectors \vec{v}_{1} and \vec{v}_{2}, which vector best represents $\Delta \vec{V}$?
A)
A
B)
C) $>$
D)
E)

Section B :

5. In a proposed space station, the station will rotate to simulate gravity.
a. If the space station has a radius " R ", then calculate the period of rotation to provide the proper earth gravity.
b. Unfortunately, as you (mass $=65 \mathrm{~kg}$) move towards the centre of the space station, your centripetal acceleration will not be the same. At half the radius " R ", what will be your weight?
As an investigator into motor vehicle accidents you have two problems:
a. A 750 kg car leaves skid marks 33.5 m long in order to stop. If $8.6 \mathrm{~m} / \mathrm{s}^{2}$ is the maximum acceleration when maximum braking occurs, what is the minimum initial velocity? Was the car speeding in the $60 \mathrm{~km} / \mathrm{h}$ zone?
b. Another car is found 45 m east of a ramp and 15 m below. At the point where the car left the ramp, the ramp sloped up at 5°. What was the speed of the car as it left the ramp? No skid marks were found.
6. You are pulling a 60 kg sled eastward on a level snow covered field with a force of 15 N at an angle of 30° to the horizontal. If the coefficient of frietion is 0.020 , then find the net-force and acceleration of the sled.
7. Find the acceleration of the masses and the tension in the string in the following diagram. (Frictionless)
$\mathrm{m}_{\mathrm{a}}=5.0 \mathrm{~kg}$
$\mathrm{m}_{\mathrm{b}}=1.0 \mathrm{~kg}$

8. An object starts from rest and accelerates at $3.0 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{E}]$ for 5.0 s . It's velocity remains constant for the next 6.0 s and then comes to rest after uniformly accelerating at $4.0 \mathrm{~m} / \mathrm{s}^{2}$ [W].
a. Find the total displacement.
b. Find the total time taken.
c. Find the average velocity for the motion. ner
